

Ilia Kempi

Development of mobile crawling robot
based on the pneumatic rubber actuators

Student exchange research

Helsinki Metropolia University of Applied Sciences

Akita National College of Technology

Bachelor of Engineering

Electronics department

Project

18.02.2014

 Abstract

Author(s)
Title

Number of Pages
Date

Ilia Kempi
Development of mobile crawling robot based on the pneumatic
rubber actuators
67 pages + 8 appendices
18 February 2014

Degree Bachelor of Engineering

Degree Programme Electronics

Specialisation option Mechatronics

Instructor Miyagawa Toyomi, Principal Lecturer

Elastic pneumatic actuators make imitation of a living organism motion possible. This
research is focused on the elastic wave drive, implemented with rubber actuators.
Similar type of gait, named Rectilinear locomotion, is found in nature and is used by
snakes and caterpillars. Despite slow speed, this method of movement is most silent,
and allows for a large horizontal load.
Based on that, a mobile crawling robot, powered by batteries and a gas tank, was
developed. Actuators are interfaced with solenoid valves and microcontroller; robot is
controlled by wireless remote. Motion speed can be precisely set with a joystick. Gas
depletion is monitored and shown to the user.

Keywords Mobile robot, Pneumatic Actuator, Rectilinear locomotion

Contents

1 Introduction 1

2 Project definition 1

2.1 Allocation and department 1

2.2 Setup 2

2.3 Goals and challenges 3

2.4 Project timeline 3

3 Research 4

3.1 Bubbler actuator 4

3.2 Locomotion 7

3.2.1 Rectilinear locomotion 7

3.2.2 Froude number 8

3.2.3 Pneumatic actuator system 9

3.3 Bubbler controller board 10

3.3.1 Overview 10

3.3.2 Controller logic 11

4 Firmware design 13

4.1 Microcontroller 13

4.1.1 Atmel ATmega328P 13

4.1.2 Developer tools 14

4.1.3 ISP and DebugWire 15

4.1.4 MSP430 Launchpad 17

4.2 Wireless module 17

4.2.1 NRF24L01 17

4.2.2 Radio control functions 18

4.3 Remote control 20

4.3.1 Architecture 20

4.3.2 Main loop 21

4.3.3 Joystick and ADC 25

4.3.4 CORDIC 27

4.3.5 Driver instruction 29

4.4 Robot driver 31

4.4.1 Architecture 31

4.4.2 Main loop 32

4.4.3 EEPROM memory 38

4.4.4 Steering system 39

4.4.5 Actuator timing 43

5 Electrical design 45

5.1 KiCAD 45

5.2 Remote control 46

5.3 Robot 47

5.3.1 Solenoid valve drive 47

5.3.2 Digital power supply 50

6 Mechanical considerations 53

6.1 Robot balance 53

6.2 Pneumatic circuit 54

7 Device assembly 56

7.1 PCB manufacturing 56

7.2 Bill of materials 58

8 Results 61

9 Conclusion 64

10 Self-assessment 65

References 67

Appendices

Appendix 1. Remote control program code

Appendix 2. Robot driver program code

Appendix 3. Remote control schematic diagram

Appendix 4. Remote control PCB layout

Appendix 5. Remote control PCB copper layer

Appendix 6. Robot driver schematic diagram

Appendix 7. Robot driver PCB layout

Appendix 8. Robot driver PCB copper layer

1

1 Introduction

Pneumatic and hydraulic actuators, in contrast with conventional electromagnetic mo-

tors, provide an alternative approach to motion control in the field of mechatronics. Arti-

ficial muscles, driven by changes in the internal pressure, alter own shape to exert

force on the surrounding world, thereby imitating motion of a living organism. This natu-

ral ability is important for certain appliances like animal and human robotics. Actuators

require complex movement and force distribution pattern to mimic soft and gentle natu-

ral motion, not to mention compact size demands. Mechanical design of elastic actua-

tors is quite challenging, as three-dimensional deformation during operation should be

modelled.

Actuator control is often a challenging task as well. Precise movement of piezoelectric

or pressure actuators is difficult to achieve, and many phenomena should be consid-

ered. Hysteresis, flow delay, and driving voltage/pressure drops are to be modelled and

their effects included into the system output. Embedded digital electronics offers suffi-

cient computing power to handle most of these processes. For actuator systems,

whose physical outputs can be measured, feedback loops are common practice.

Those allow for an immediate motion correction, and are utilizing analogue electronics.

In this project, a simple digital human-actuator interface was implemented in order to

understand challenges of making such a system. During my research I have learned

and understood a lot of new concepts, and did use my former knowledge as well. This

report highlights project parts, whose required most of my attention.

2 Project definition

2.1 Allocation and department

Current research was conducted under student exchange agreement between Sendai

National College of Technology, Japan and Metropolia University of Applied Sciences,

Helsinki. I and other students were distributed into various technical schools among

Tōhoku, north-eastern area of Japan, where Sendai is the largest city. I have been al-

located to the Akita National College of Technology, Akita prefecture. By my application,

2

I was placed in the Mechanical Department, Mechatronics laboratory, under supervi-

sion of Miyagawa Toyomi, principal lecturer.

2.2 Setup

Professor Miyagawa laboratory and research facility specializes in mechatronics, robot-

ics, mechanical system design, mechanical elements and welfare mechanical engi-

neering. The laboratory is equipped for research and testing of basic mechanical,

pneumatic and electrical systems.

I was provided own space in the laboratory, and given an office laptop for use in the

project. Research facility has all necessary mechanical tools as well as digital multi-

meter, digital oscilloscope, air compressor, soldering iron, prototyping boards and DC

power supply.

As a material for research, I was given a device named “Bubbler controller board” (Pic-

ture 1). It is the remains of year 1995 actuator research project, collaboration between

Toshiba R&D and IBM Watson. The circuit board was used as a pneumatic valve con-

troller to drive elastic actuators for testing.

It is still fully operational, its principles and structure are described further in the report,

under the Research Section.

Figure 1. Bubbler controller board

3

2.3 Goals and challenges

Purpose of the project is to design and make a mobile robot out of an actuator mecha-

nism used in previous research. It should be powered by batteries and a small N2 gas

tank (Figure 2). If possible, its control should be wireless, meaning robot should have

as less limitations of mobility as possible. Professor Miyagawa is to provide support

with mechanical part. Project duration is five months.

Challenges of the project were:

 Work on the project alone

 All required information had to be self-studied

 All necessary components had to be estimated and ordered

2.4 Project timeline

Project had started in October 2013 and continued until February 2014. Table 1 pro-

vides chronological sequence of work on the project and highlights important mile-

stones (green cells).

Working day starts at 9 AM and continues until about 3 PM, with lunch break of one

hour. Daily workload was not the same during the project, and increased linearly, ap-

proaching closer to the deadline. Periods of higher workload are indicated by colour of

Figure 2. NTG N2 BLOW

4

the table cells. Blue cells indicate work until about 5 PM, and red cells are for days over

5 PM.

Table 1. Project timeline

1 Oct 2013 - 14 Oct 2013 Project planning and actuator research

15 Oct 2013 Order of ATmega328P microcontrollers with the AVR Dragon
programmer

16 Oct 2013 2-axis joystick is salvaged from the game controller

17 Oct 2013 - 22 Oct 2013 Prototyping the joystick with a temporary MSP430 Microcon-
troller

23 Oct 2013 - 29 Oct 2013 Connecting a second MSP430 through SPI serial connection

30 Oct 2013 - 2 Nov 2013 Hacking the bubbler controller board with dual MSP430 joy-
stick-control system in order to drive actuators independently

3 Nov 2013 Prototype of robot steering controller works

4 Nov 2013 - 10 Nov 2013 Working on the preliminary PCB component list

11 Nov 2013 - 18 Nov 2013 Learning KiCAD software, first circuit design

19 Nov 2013 - 25 Nov 2013 Research on advanced robot control

26 Nov 2013 - 30 Nov 2013 First PCB Layout design

2 Dec 2013 AVR Dragon and ATmega328P have arrived

3 Dec 2013 - 12 Dec 2013 Learning AVR Dragon and Atmel studio. Programming
ATmega328P

13 Dec 2013 - 18 Dec 2013 Design of a power supply, PCB and component list revision

19 Dec 2013 - 7 Jan 2014 Winter vacation

8 Jan 2014 - 13 Jan 2014 PCB chemical etching training and research. Final PCB com-
ponent list is confirmed

14 Jan 2014 Raw PCB plates and all components have been ordered

15 Jan 2014 - 20 Jan 2014 Final PCB design. Programming

21 Jan 2014 Etching of controller and robot PCBs is successful

22 Jan 2014 - 30 Jan 2014 PCB drilling and assembly, firmware beta version

31 Jan 2014 Robot is complete and operational

1 Feb 2014 - 6 Feb 2014 Robot tests and corrections to the program

7 Feb 2014 - 18 Feb 2014 Report writing

In general, work was done every day, except weekends, national holidays and college-

wise events. No work was done during winter vacation.

3 Research

3.1 Bubbler actuator

"Bubbler”, a pneumatic rubber actuator (from now on simply actuator) consists of a

silicone rubber slab, and its interior is divided into many chambers (Figures 3 and 4).

5

When pressure is applied to the chamber, it changes shape, forming a bump on the

actuator surface. The biggest allowed pressure is 0.3 MPa. If chambers are pressur-

ized sequentially, elastic waves of vari-

ous wavelength and frequency can be

produced (Figure 5). Fins are formed on

the face of the actuator, thereby amplify-

ing surface deformation and wave mo-

tions as well. Each fin tip draws a poly-

gon-like locus, altogether generating

force to move the foreign objects in con-

tact. Direction of movement is opposite

to the wave propagation. If placed

against another surface, actuator will

move with certain speed, which is de-

pendent on the elastic wave properties.

Combined with a smart digital control,

various types of waves can be generat-

ed, and this is the main principle of robot

movement.

Actuator deformation is closely studied in the “Pneumatic Rubber Actuator Driven by

Elastic Travelling Waves” paper by Koichi Suzumori [1], where optimal driving charac-

teristics of the actuator are experimentally found. Effective fin tip motion, in other

words, its maximum displacement in parallel to the surface of the actuator, is named

Figure 3. Actuator Figure 4. Structure of actuator (unit: mm)

Figure 5. Actuator driving principle

6

Figure 8. Velocity against vertical load

step feed (Figure 6). According to analysis, the elas-

tic deformation occurs only within three empty cham-

bers from pressurized chamber. Because of that, step

feed becomes saturated at wavelength of 6 cham-

bers. Optimal duty ratio of the driving pattern is found

to be 0.5, as larger values are constricting the fin lo-

cus, reducing full swing of its tip. Taking into account

chamber inflation pneumatic response, actuator trav-

elling velocity is modelled by the first-order delay, and

given as

 ()

where and represent the time delay constant and driving frequency respectively.

represents the efficiency of travelling motion, which depends on the slipping between

the actuator and travelling surface.

Experimental results show disagreement in actual velocity and predicted values. Speed

of movement reaches its peak at the driving frequency of about 0.9 Hz, and decays

with further increase of frequency (Figure 7). If various types of loads are applied to the

moving actuator, decrease of the speed is linear in every case. Most effective against

vertical load (Figure 8), this 48.4 gram actuator has been reported to have load-to-

weight ratio in the order of .

Figure 7. Velocity against driving frequency

Figure 6. Fin displacement pattern
(unit: mm)

7

Report demonstrates that optimal operation of the actuator is an even wave of six

chambers’ length with frequency of 0.9 Hz. With 12 chambers in total, selected wave-

length pattern is periodical, and chamber pressurizing pipes are paired accordingly, i.e.

1st and 7th, 2nd and 8th and so on (see Section 6.2).

3.2 Locomotion

3.2.1 Rectilinear locomotion

Rectilinear locomotion is a common gait of caterpillars, which is also used by maggots,

snakes and earthworms. Many studies about this type of locomotion in nature were

conducted and published, earliest indicating in 1812 by Everard Home. Natural crawl-

ers are travelling by producing elastic waves on the body. Waves are generated by

means of rib muscle in the case of snakes, or “hydraulic skeleton” in the case of cater-

pillars (Figure 9).

As can be deducted from the sequence, movement and wave directions are the same,

while travelled surface is obviously pushed to the opposite direction. Contracted part is

lifted above the surface, and extended part is pushed against, generating thrust motion.

This mode of walking with many small legs is indeed similar to the fin movement of the

given actuator. Snakes implement reversed pattern by extending the lifted parts and

pushing the ground back with compressed part, resulting in the elastic waves in oppo-

site direction to the path.

Figure 9. Caterpillar locomotion (source: Nature journal [2])

8

This snake gait is extensively described in the “Snakes mimic earthworms: propulsion

using rectilinear travelling waves” paper, Interface journal 2013 [3]. In this study, some

similar to the actuator travelling properties were experimentally found, for example,

almost immediate transition from rest condition to the full speed, and same fast decel-

eration as well. It is also noted, that rectilinear locomotion benefits from climbing motion,

which is indicated by increase of speed at inclined rough surfaces. No data was col-

lected regarding unusual surfaces like sand, because snake use other types of locomo-

tion for that case. For kinematic analysis, the reptile body was modelled by discretizing

the body into nodes of equal mass. Model is then compared to the experimental data

collected from different snakes. It is reported, that wavelength does not affect the trav-

elling speed, while bigger amplitude yields bigger velocity by logarithmic dependence.

Concerning optimality of rectilinear wave frequencies, emphasis is put on the Froude

number, which is used to compare inertia to friction and gravity and defined as

where is the wave amplitude, is the backward friction coefficient, stands for the

wave period and is the acceleration due to gravity.

3.2.2 Froude number

According to Wikipedia,

The Froude number is the ratio of the centripetal force around the center of mo-
tion, the foot, and the weight of the animal walking:

 ⁄

where is the mass, is the characteristic length, is the acceleration due to

gravity and is the velocity. The characteristic length, , may be chosen to suit
the study at hand. For instance, some studies have used the vertical distance of
the hip joint from the ground, while others have used total leg length.
The Froude number may also be calculated from the stride frequency as fol-
lows:

()

If total leg length is used as the characteristic length, then the theoretical maxi-
mum speed of walking has a Froude number of 1.0 since any higher value would
result in 'take-off' and the foot missing the ground.

9

In the case of rectilinear locomotion, total leg length was replaced by the amplitude,

with wave being similar to the infinite set of legs stepping on the surface, and friction

coefficient was added to account for friction ratio.

Using the previous actuator experimental results [1] at optimal driving, namely, ampli-

tude of 2.75 mm, and friction coefficient of 0.5, the maximum allowed period of wave

propagation can be found by solving for :

 √

 ⁄

which means, that maximum beneficial

driving frequency of actuator is 42 Hz,

and above that actuator fins will start to

slip. It is clearly not the reason why

factual velocity is decaying, because it

does so already at average periods.

However, according to the model, opti-

mal frequencies of heavy snakes are at

way lower than unity Froude numbers

[3]. Reading the Figure 10, it is about 1

Hz for Dumeril’s Boa specimen, when

travelling speed peaks. For larger fre-

quencies velocity is somewhat lower due to suboptimal Froude number.

3.2.3 Pneumatic actuator system

Main reason for early slowing down in the pressure actuator system is the slow pneu-

matic response to the pressure input frequency. Chambers do not keep up with fast

driver operation, restricting the step feed and dramatically decreasing speed. Second

problem can be the pressure loss in the pneumatic system. Flow demand from the ac-

tuator has linear dependence on the actuator operating frequency, as the same num-

ber of chambers should be inflated and exhausted in shorter time. Rising pressure drop

in the flow restricting valves and pipes affects chamber deformation, reducing the full

swing. There is also hypothesis of harmonic oscillations in periodical motion of caterpil-

lars, mentioned in “Kinematics of Soft-bodied, Legged Locomotion in Manduca sexta

Figure 10. Velocity against wave period from
Dumeril’s Boa kinematic model

10

Larvae” analysis, Biological Bulletin 2007 [4]. The critical damping, caused by actuator

membrane during fast oscillations, and natural frequency of the periodical elastic infla-

tion-exhaust system could explain peaking and falling velocity behavior.

More advanced and complex actuator characteristic model would definitely predict its

kinematics more precisely. It can be done using higher order delay models, following

the assumption in original research [1] or by nodal method, like used for snake analysis

[3]. For now, regarding travelling, conclusions are:

 Velocity versus frequency is almost linear until 0.9 Hz, use of higher frequen-

cies reduces velocity

 Amplitude will improve speed and can be slightly increased with applied pres-

sure, but it is always a trade-off with air depletion

 Wavelengths other than 6 chambers are not optimal for normal surface

 Climbing up inclined plane is likely to benefit velocity

 There is no other way to improve locomotion profile without altering the actuator

3.3 Bubbler controller board

3.3.1 Overview

Bubbler controller board consists of 1.6 mm thick glass-epoxy base, with copper traces

on the top side, and adhesive trace layer at the bottom. Two connectors are mounted

to the edge; 6-pin connector is for control panel cord, and 2-pin connector for power.

Two CKD solenoid pneumatic valve arrays are fixed on the top side (Figure 11). They

are also connected with two bubbler actuators mounted at 1 cm beyond the bottom

side (Figure 12 and 13). Total weight of the device is 354 g. Control panel is presented

by a metal box of about same size, with four directional buttons on the face (Figure 14).

11

Board is powered with 5 Volt DC and a pneumatic pressure of range 0.15 - 0.3 MPa.

When FORWARD or BACKWARD buttons are pressed on the control panel, backward

or forward travelling waves are simultaneously generated on the actuators. When LEFT

or RIGHT buttons are pressed, waves are generated in the reciprocal way such that

board rotates counterclockwise or clockwise respectively. When two buttons are

pressed at the same time or no buttons are pressed, actuators are exhausted immedi-

ately and operation is halted. Board draws current of 0.3 mA in standby mode and 1.35

A during valve operation.

3.3.2 Controller logic

Control logic is presented by two Programmable Array Logic (PAL) integrated circuits

(Figure 15). Such types of chips consist of input, programmable logic plane and output

Figure 11. Bubbler controller board top Figure 12. Bubbler controller board bottom

Figure 13. Bubbler controller board front Figure 14. Control panel

12

macro cells. With operation principle similar to FPGA, PAL was programmed by Hard-

ware Description Language (HDL) Verilog. Operation of the logic is synchronous, and

clocked by 555 timer. Timing period RC circuit includes potentiometer, which can be

used to set various driving frequencies.

Four of the six control panel traces are connected to one of the chips. Each directional

button, when pressed, puts active low on the corresponding PAL input. Directional logic,

most probably implemented as a function by truth table, decodes the direction into logic

instruction for both arrays, and inhibits action when more than one button is pressed.

The driving pattern is implemented with bidirectional shift register, which by definition

needs only two bit instruction to operate with observed functionality, one bit for direc-

tion and one bit for enable/disable shifting. Outputs energize solenoid valves by means

of Darlington sink drivers.

Travelling experiments are consistent with data presented in the Section 3.1 Bubbler

actuator. It is also observed, that pressurizing pattern resets every time button is re-

leased, and is the same for both PALs. Massive board of superior size, elevated above

actuator, is affecting overall device balance. Instant, when both actuators have zero

amplitude from one end, results in slight board swinging during start pressurizing pat-

tern 111000 and 000111 as well. Yet, when with maximum operating amplitude of 4mm

Figure 15. Bubbler controller board block diagram

13

at 0.3 MPa, there is no threat to the stability of the moving system, but only possibility

of small unwanted oscillations.

With this actuator layout similar to the caterpillars of tank, Bubbler controller board has

3 degrees of freedom. Having the optimal wavelength shorter than actuator more than

two times, there is no necessity to place two actuators in series. Mobile robot with simi-

lar valve and actuator layout will benefit from symmetrical mass distribution and indi-

vidual driving of caterpillars.

4 Firmware design

4.1 Microcontroller

4.1.1 Atmel ATmega328P

Robot remote control system should consist of two smart elements, human interface

controller, and an actuator driver. The latter in our case deals with 12 solenoid valves

at relatively low frequencies, and should connect with the controller through wireless

module. It is most likely for radio module to be interfaced with widely used high-speed

Serial Peripheral Interface (SPI), with a number of pins greater than 3. Including vari-

ous power and reset connections, pin count of the driver should be more than 20, while

other parameters’ range is wide. Considering limited PCB manufacturing capabilities,

and for the ease of prototyping, microcontroller in DIP through-hole package is the best

choice, and can be drop-in replaced in case of failure.

ATmega328P 8-bit microcontroller by

Atmel was selected. While offering

standard set of useful features, it has

28-PDIP version (Figure 26) and is

relatively cheap. It is also quite popu-

lar, and has a lot of related information

and discussions on the Internet. Both

interface and driver can be implement-

ed using similar chips, ensuring high

code compatibility.

Figure 16. ATmega328P DIP configuration

14

Features of interest (ATmega datasheet [5]):

 8 MHz operation at 3 V

 32KBytes of In-System Self-Programmable Flash program memory

 1KByte EEPROM

 On-chip 2-cycle Multiplier

 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture

Mode

 6-channel 10-bit ADC

 Master/Slave SPI Serial Interface

 Byte-oriented 2-wire Serial Interface

 Programmable Brown-out Detection

 Operating voltage range of 1.8 - 5.5 V

4.1.2 Developer tools

Atmel Studio 6 was used as a programming and debugging environment (Figure 17). It

has a lot of useful features, and compatible with all Atmel microcontrollers. It is possible

to use C, C++, or assembler to create firmware. In this project, capability of C pro-

gramming language is sufficient to create all necessary robot control algorithms.

Figure 17. Atmel Studio 6

15

Most useful features at this level of programming:

 Fast navigation to the function or variable origin

 Type suggestions

 “Start without debugging” button, fast build and upload with single click

Atmel Studio uses avr-gcc compiler

chain to build the C code, which can

be then programmed into chip memory

with a programmer device. Cheap and

simple AVR Dragon is chosen as pro-

grammer/debugger (Figure 18). It is

connected to the PC using an USB

cable and is capable to program AT-

mega328P with several distinct pro-

gramming modes. DebugWire pro-

gramming was used, as a most con-

venient mode for prototyping.

4.1.3 ISP and DebugWire

In-System Programming (ISP) is one of programming modes supported by Atmel mi-

crocontrollers. With this mode, all chip memory and registers can be accessed without

ejecting integrated circuit from the PCB. Similar types of programming are widely used

by other manufacturers (Texas Instruments, Cypress, etc.). ISP is based on the SPI

connection protocol and consists of six signal lines. Smallest ISP connector is 3x2

male, 2.54 mm pitch, with pin layout described in the Figure 19. Same standard con-

nector is present on the AVR Dragon, allowing to couple programmer to the board with

one cable.

MOSI, MISO, SCLK pins are connected to the SPI lines of ATmega328P. VTG and

GND pins are used to detect in-system operating voltage for correct programming op-

eration. RESET pin becomes bidirectional DebugWire data line during programming

and debugging process, halting execution of program in Flash and giving instructions to

internal programming logic of ATmega.

Figure 18. AVR Dragon with improvised
prototype board connector

16

The actual problem I have encountered during debug process is that In-System Pro-

gramming circuitry interferes with the SPI communication of ATmega and other mod-

ules. In the same way, modules could interfere with programming operation, if acci-

dentally activated. For this type of complex situations, official proposed solution is to

isolate ATmega ISP connection from main lines with resistors [6]. This allows the dif-

ference of logic voltages on different ends of the line, leaving voltage drop on the resis-

tor.

To avoid complicated design, various operation patterns of AVR Dragon were studied.

In fact, during debugging process, only DebugWire data line is active, and VTG and

GND connections are necessary. This workaround removed mentioned problems, and

greatly helped in troubleshooting of wireless modules. Moreover, prior to debug se-

quence, code is compiled and uploaded to the chip using only RESET line. It is also

possible to execute only compile-upload sequence, like said in the Chapter 4.1.2. Only

one drawback of such light DebugWire programming is found. Fuse registers, used to

store important settings, cannot be accessed or programmed in this way, and should

be changed in ISP.

Figure 19. In-System Programming interface

17

4.1.4 MSP430 Launchpad

Prior to the ATmega, part of the robot

algorithms was designed and tested us-

ing LaunchPad development board by

Texas Instruments (Figure 20). It fea-

tures 16-bit MSP430g2553 microcontrol-

ler, which has list of features similar to

that of ATmega328P. Programming envi-

ronment used was TI Code Composer

Studio. Compiled code is uploaded on

the chip using TI proprietary Spy-Bi-Wire

interface, which uses RESET line in a

way similar to DebugWire.

4.2 Wireless module

4.2.1 NRF24L01

The nRF24L01+ wireless module is a small breakout PCB for the one-chip transceiver

of the same name by Nordic Semiconductor. Module has meander style PCB trace

antenna and all components necessary for the radio operation (Figure 21). Module is

interfaced with 4x2 2.54mm pitch male connector, and addressed through SPI. This

makes module easy for prototype and replace in case of failure. It also has reasonable

price among other wireless solutions on the market.

Features of interest (nRF24L01 datasheet

[7]):

 Worldwide 2.4GHz ISM band

 Ultra low power operation

 1.9 to 3.6 V supply range

 Auto packet transaction handling

 Auto acknowledgment feature

Figure 20. Texas instruments Launchpad

Figure 21. nRF24L01+ module

18

In addition to the VCC and Ground lines, breakout board connector is tied to the data

and control interface pins of the radio chip [7]:

The data and control interface gives you access to all the features in the
nRF24L01. The data and control interface consists of the following six 5Volt tol-
erant digital signals:
• IRQ (this signal is active low and is controlled by three maskable interrupt
sources)
• CE (this signal is active high and is used to activate the chip in RX or TX mode)
• CSN (SPI signal)
• SCK (SPI signal)
• MOSI (SPI signal)
• MISO (SPI signal)

Communication through SPI is performed in conventional way (Figure 22). After initiat-

ing transmission by putting CSN line low, microcontroller clocks the SCK line and shifts

command bits Cn on the MOSI line. In the same instant, STATUS register bits Sn are

shifted onto the MISO line, followed by data bits Dn [7].

4.2.2 Radio control functions

To handle commands, radio configuration and control routines I used nRF24L01 con-

trol library adapted for Atmega microcontrollers [8]. Such hardware abstraction allows

sending and receiving data using only few functions, included in the library:

Figure 22. SPI communication with nRF24L01+ module

19

void nrf24l01_init(); //preliminary configuration of radio module

uint8_t nrf24l01_readready(); //check for received data available

void nrf24l01_read(uint8_t *data); //read received packets from the module

uint8_t nrf24l01_write(uint8_t *data); //write data to the module and send by radio

With this library, it is also possible to use Auto acknowledge feature, embedded in

nRF24L01 firmware. When both radio modules are configured for acknowledge, after

successful transmission receiver automatically sends acknowledge packet back. In

other case, transmitter waits certain amount of time before resending data or giving

transmission failure flag.

NRF24L01 library functions use ATmega SPI peripheral to communicate with the radio

module, with all serial operations wrapped in a small function:

uint8_t spi_writereadbyte(uint8_t data) {

 SPDR = data; // load serial shift register with data

 while((SPSR & (1<<SPIF)) == 0); //poll CPU until transmission finished

 return SPDR; // return received data from the shift register

}

This is a simple one-byte duplex function, based on the ability of SPDR register to shift

MOSI data out from one side and load MISO data from another end at the same time.

Based on the SPI function, troubleshooting feature has been implemented on both ro-

bot and remote control systems. Function module_check sends dummy data to the

module to confirm adequate response, and is used before initialization of the radio set-

tings:

void module_check(){

 uint8_t test;

 spi_init(); //initialization of SPI peripheral

 nrf24l01_CSNlo; //put CSN line low

 _delay_us(10); //wait for the nrf24l01 MCU to react on boot

 test = spi_writereadbyte(0x00); //send dummy data

if ((test == 0x00)||(test == 0xFF)) {

 PORTD |= 0x03; // error message

 while(1); // trap CPU

 }

 nrf24l01_CSNhi; //put CSN line high

}

20

Shifting zero byte to the MOSI line will generate clock signal on the SCK without giving

any command to the transmitter MCU. Like it was explained earlier in Chapter 4.2.1,

STATUS register bits are shifted automatically with the first 8 clock cycles. According to

the datasheet [8], STATUS register default value is 0001110. There is possibility of bit

slip during first transmission between ATmega and radio module. Because of that, first

value of STATUS register is compared to the all zero and all one. If device sends

something other than that, it is considered operational. If not, CPU is captured in infinite

loop and error message is displayed. Error also indicated if module is not present in in

the system (all zero response).

4.3 Remote control

4.3.1 Architecture

Purpose of the remote is to gather data and send it to the driver system. Architecture of

the remote is presented in Figure 23. Human interface of robot steering is implemented

using thumb joystick with two degrees of freedom. Joystick also has a button which is

activated if shaft is pressed down. It is used to shuffle the dynamic range of actuator

driving frequency. Current frequency mode is displayed at the indicator (Figure 24).

Additional button is used to reset the gas tank gauge, which is placed on robot.

Figure 23. Remote control architecture

21

Joystick data is sampled with Analog-

to-Digital Converter (ADC) and pro-

cessed with the CORDIC algorithm.

Depending on the frequency setting,

information is modified and then fed to

the RF transmitter through SPI.

Internal Brown-Out Detector (BOD) is

used to hold the microcontroller in re-

set state during periods of unaccepta-

bly low voltage (brownouts). Generally,

if voltage is less than specified operational minimum of 1.8 V, ATmega328P CPU might

act unpredictably [5]. Because remote control is powered by pair of alkaline batteries,

BOD is set to 1.8 V to inhibit probable low-voltage operations. The BOD settings are

defined in fuse registers, separately from Flash program memory, and cannot be

changed during runtime.

4.3.2 Main loop

Remote control program is an infinite repeating sequence implemented with while-loop.

Manual user input is sampled and sent to the driver 430 times a second, allowing fast

response of the system. Periods of while-loop execution in active and standby mode

are equal to 2.315 ms and 14.50 ms respectively. Loop period is used as a time incre-

ment for events longer than maximum loop duration. There is a small decrease in the

ATmega clock frequency when batteries wear out, so loop period is a subject to

change.

Program start is followed by startup delay of 15 milliseconds, allowing the system volt-

age and CPU clock settle. NRF24L01 module has startup time of 10.3 ms, stated in the

datasheet [7]. 15 ms should be enough before executing function module_check, de-

scribed in Chapter 4.2.2. If module does not respond accordingly, error message is

displayed in the indicator, and program execution is stopped until system is reset. This

is done before initialization of RF module, preventing the system from hanging during

runtime. Together with nRF24L01 module, ADC is set up, and system interrupts are

enabled (see Chapter 4.3.3 for more information). Flowchart of the main loop is pre-

sented in Figure 25.

Figure 24. Remote control indicator

22

Transitions drawn with strong lines do happen most often; thin arrows are indicating

rare operations. Joystick reading and processing algorithms are closely described in

the following Chapters 4.3.3 – 4.3.5.

Function nrf24l01_write from the radio module library is used to send buffer data to the

driver. When output of this function equals one, it means Auto acknowledge packet is

received, and transmission was successful (Chapter 4.2.2). Ack flag, which stores this

information, is checked with if-statement. In case of successful transmission, port D

indicator of corresponding state is lit up.

CORDIC
Frequency change

no

yes

no

yes

Startup delay

RF module
working? Error message

Initiate ADC

Initialization

Joystick bar

Success?

Joystick button Tank reset button

Signal lost

nRF24L01
send

Figure 25. Remote control program flowchart

Start

Halt

23

ack = nrf24l01_write(buffer);

if(ack){

 PORTD |= state; //set output bit high

 delay.lost = 0;

 }

else {

 delay.lost += 1;

 if (delay.lost > 60){

 PORTD ^= state; //invert output bit

 delay.lost = 0;

 }

}

When transmission is not acknowledged, lost counter is incremented with every loop

rotation. If ack equals zero for more than 60 loop iterations, state indicator will blink

with periods of . Extended loop period means that radio module

is in standby state waiting for receiver.

Tank reset signal is activated in the same fashion to protect air gauge data from acci-

dental erasure.

if(!(PIND & 0x40)){

delay.reset += 1;

 if (delay.reset > 1000){signal.reset = 11;}

}

else {

 signal.reset = 0;

 delay.reset = 0;

}

If tank reset button (Figure 24) is active low for over thousand cycles, reset instruction

is generated for next transmission. Button should be pressed somehow longer, than

calculated value of . To avoid user confusion, 5 second time is

recommended.

Similarly to the counters, additional

instructions to the driver module are

combined into one byte using bit field

notation.

 Figure 26. Instruction byte

24

union control

{

 uint8_t all;

 struct

 {

 uint8_t reset:4;

 uint8_t unused:4;

 };

};

union control signal;

It is more difficult for hardware to generate long bit pattern accidentally. Because of that,

reset instruction is four bits long and is addressed under the signal union (Figure 26).

Unused bits are reserved for future use. Whole instruction byte is named all, and is

used to address all instruction bits at the same time.

Pressing the joystick button shuffles state variable. To make program react to one but-

ton press at a time, functionality similar to the flip-flop is carried out:

if(!(PIND & 0x80)){ press = 1; }

if((press)&&(PIND & 0x80)){

 press = 0;

 PORTD &= ~CLR;

 switch (state){

 case DOTFIVE:{

 state = DOTSEVEN;

 break;

 }

 case DOTSEVEN:{

 state = DOTNINE;

 break;

 }

 case DOTNINE:{

 state = DOTFIVE;

 break;

 }

 }

}

When button is pressed, appropriate press flag is set. Starting from next loop rotation,

button pin will be checked for a release. Minimum observed button press duration is 30

ms. This means, that there practically no possibility of skipping a button press even

during the standby mode with period of 14.50 ms.

25

4.3.3 Joystick and ADC

By tilting joystick to different directions, information about direction and speed can be

collected by device. Simple joystick (Figure 22) was taken out of game controller for

this purpose. Joystick shaft is connected with two

rotating rings to the potentiometers. Coordinates

of the tip can be estimated by reading voltage on

the middle pin of each potentiometer. AT-

mega328P has an ADC with 10-bit resolution,

which means that full range of one axis is 1024

logic levels. Horizontal and vertical axis potenti-

ometers are connected to the ADC channel 0 and

channel 1 respectively. ADC peripheral is config-

ured with InitADC function.

void InitADC()

{

 ADMUX |= (1<<REFS0); // AVcc is selected as reference

ADCSRA |= (1<<ADPS2)|(1<<ADPS1)|(1<<ADIE)|(1<<ADEN); //ADC clock prescaler

factor of 64, ADC interrupt enable, ADC operation enable

 DIDR0 = 0x03; // disable digital input on first 2 ADC channels

 set_sleep_mode(SLEEP_MODE_ADC); //selecting and enabling ADC noise reduc-

tion mode

 sleep_enable();

}

ADC Noise reduction mode is used during conversion. It means that processor is put to

sleep mode to inhibit high-frequency noise in the analogue circuitry. Empty ADC inter-

rupt vector is automatically accessed on the end of conversion to exit sleep mode, and

ADSC flag is cleared. ReadADC function is used to read voltage level on the selected

ADC channel.

EMPTY_INTERRUPT(ADC_vect);

uint16_t ReadADC(uint8_t ADCchannel)

{

ADMUX = (ADMUX & 0xF0) | (ADCchannel & 0x0F); //Channel is applied to the

control register through safety mask and operation is started

do {sleep_cpu();} while(ADCSRA & (1<<ADSC)); //Processor will return to

sleep for any interrupt except ADC

 return ADC;} //Processor woke up, return conversion value

Figure 22. Potentiometer joystick

26

Raw ADC readings of joystick at rest will

always be around 512, because potenti-

ometers in such case are set in the mid-

dle, dividing the operating voltage by

half. This point is set to be an origin of

the joystick coordinate system by sub-

tracting 512 from every reading (Figure

23). To simplify steering algorithm, di-

rection and magnitude of the joystick tilt

is encoded with Polar system. In order

to convert joystick coordinates, CORDIC

algorithm is utilized and described in the

Chapter 4.3.4. CORDIC function collects

information about signs and magnitude of and . Angle in a range of [-180 ; 180]

and hypotenuse are addressed to the function as pointers.

For symmetrical encoding of steering, new angle convention was implemented. It

means that zero angle reference corresponds to the positive Y axis, and interpreted as

forward motion, while negative Y direction is backward motion. Then, positive and neg-

ative angles are for rightward and leftward directions accordingly. To get such angle

from Cartesian coordinates, values are fed into CORDIC function in reverse order,

transposing the coordinate frame. Variables ang and str are used for direction angle

and incline strength respectively. To take two output values out simultaneously, point-

ers to mentioned variables’ addresses are passed to the function as arguments:

pot[0] = ReadADC(0);

pot[1] = ReadADC(1);

pot[0] -= 512;

pot[1] -= 512;

cordic(pot[1], pot[0], &ang, &str);

str = str>512 ? 512 : str;

In order to keep the vector magnitude the same for every joystick position, distance

larger than 512 is cropped to the 512 by subtraction, forming fine polar circle of allowed

values, as shown on Figure 23.

Figure 23. Joystick coordinate system

27

4.3.4 CORDIC

CORDIC algorithm is used to approximate coordinates and vectors using iterative

search, and in some way resembles bisection method of finding function roots. At first,

CORDIC was utilized during the preliminary robot control prototyping. MSP430g2553

does not have hardware multiplier, which makes it difficult to perform trigonometric op-

erations without additional research. Mentioned algorithm uses bit shift, subtract and

add operation to rotate vectors, and is widely used in hardware-constrained applica-

tions. Code implementation for MSP 430 was found at TI support forum [9] and used

for joystick direction calculation as arctangent function.

CORDIC algorithm was migrated to the ATmega robot control program for research

purposes, and has shown satisfactory results. Function Atan2, included in the Atmel

Studio math library, computes angles with great amount of precision. Experiments

show, that it takes from 362 to 564 to calculate arctangent and hypotenuse from

joystick readings, using math library. CORDIC operates in a fixed point format and al-

ways takes equal time of 234 to process same values with precision of two decimal

places. This is beneficial in both speed and stability; also, further accelerating of algo-

rithm is possible by allowing bigger error.

At start of CORDIC operation, resulting

angle equals zero. Vector , defined by

input, is repeatedly rotated towards axis

with steps of decreasing magnitude

(Figure 24, Coranac.com [10]). To rotate

vector, endpoint coordinates are recipro-

cally scaled using bit shift () .

Arctangent result is accumulated every

iteration by values of , defined in the

lookup table (etc). Eventu-

ally, desired precision is achieved.

Angles in the approximation look up table

are pre-calculated arctangent values. For fixed-point bit operation, they are presented

in 16-bit offset binary. Here, this notation splits range of [90; -90] degrees into 216 val-

Figure 24. Angle approximation with CORDIC

28

ues of the same size [11]. To convert angle in degrees to the offset binary, we can use

the following function: ()

 ⁄ .

const signed int atanAngles[14] = {

 0x12E3, //atan(2^-1) = 26.5651

 0x09FB, //atan(2^-2) = 14.0362

 0x0511, //7.12502

 0x028B, //3.57633

 0x0146, //1.78981

 0x00A3, //0.895174

 0x0051, //0.447614

 0x0029, //0.223808

 0x0014, //0.111904

 0x000A, //0.05595

 0x0005, //0.0279765

 0x0003, //0.0139882

 0x0002, //0.0069941

 0x0001 //0.0035013

};

Input values are presented in the offset binary code as well. Algorithm works for the

relative coordinates from the unit circle, with 1 equal to the 16384, or 214. Because of

this, joystick readings are scaled appropriately. Initial area of 5122 is magnified with a

bit shift, as shown in the Figure 25. This basic operation greatly improves angle ap-

proximation, and does not slow down the algorithm.

#define ABS(x) x>0 ? x : -x //this macro returns absolute value of x

#define ROT180 32760 //180 degree rotation in offset binary

#define ROT90 16380 //180 degree rotation in offset binary

void cordic(int16_t x, int16_t y, int16_t *angle, int16_t *hypotenuse){

 int16_t theta = 0, x1, y1, reg;

 uint8_t i;

 uint8_t shift = 0;

 const int16_t *atanptr = atanAngles; //pointer to the lookup table

 x1 = ABS(x << 4); // expanding joystick readings for better approximation

 y1 = ABS(y << 4);

if(x1 < y1) { // if over 45 degrees, values are transposed in respect to

the x = y line

 reg = x1;

 x1 = y1;

 y1 = reg;

 shift = 1;

 }

 for(i=0; i<=12; i++) { // iterative rotation of vector to the x axis

Figure 25. CORDIC unit circle

29

 if(y1 < 0){

theta -= *atanptr++; // theta is used to accu-

mulate look up table values

 reg = x1 - (y1 >> i);

 y1 = (x1 >> i) + y1;

 x1 = reg;

 }

 else {

 theta += *atanptr++;

 reg = x1 + (y1 >> i);

 y1 = -(x1 >> i) + y1;

 x1 = reg;

 }

 }

if(shift) theta = ROT90 - theta; //fix for angles that should be greater

than 45

 if(x < 0){ //second and third quadrant check

 if(y < 0) theta -= ROT180; //Y check

 else theta = ROT180 - theta;

 }

 else{ //fourth quadrant

 if(y < 0) theta = -theta;

 }

 x1 = x1 >> 4; // constrict the value of vector back

 *angle = theta / 182; // conversion from offset binary notation

 *hypotenuse = x1 * 0.60725293; // get original scale of hypotenuse

}

By definition of CORDIC, original MSP430 algorithm was improved using ATmega328P

hardware multiplier. After last iteration, rotated input vector is scaled back to the origi-

nal value by bit shift and multiplication with constant, with hypotenuse being equal to

the result coordinate. To get rotation in degrees, inverse offset binary angle function

is used: () ⁄ . Output values are written to the addresses given by input

pointers.

4.3.5 Driver instruction

From actuator profile, expressed in the Figure 7 at the Section 3.1, we know that in the

range from 0.2 Hz to 0.9 Hz travelling velocity is proportional to frequency. These limits

are joined and fit together with dynamic range of the joystick incline. Thus, speed of the

actuator locomotion can be finely controlled with slight tilt of the joystick. However, it

was observed that most controller users usually push the joystick tip to the perimeter,

reaching the maximum incline value.

30

To make motion speed control even more flexible, three limits on the top speed during

maximum incline are introduced on Figure 26. The frequency mode is 0.7 Hz by default,

and it can be shifted by pressing the joystick bar. Depending on the given frequency

mode factor, function freq_change scales joystick input tilt of range [0 ; 512] units to

one of following ranges: [0; 329] for 0.9 Hz, [0 ; 302] for 0.7 Hz, and [0; 253] for 0.5

Hz.

int16_t freq_change(uint8_t factor, int16_t tilt){

 switch (factor) {

 case DOTNINE:{

 tilt *= 0.642578125;

 tilt = tilt<18 ? 0 : (tilt - 17);

 break;

 }

 case DOTSEVEN:{

 tilt *= 0.58984375;

 tilt = tilt<16 ? 0 : (tilt - 15);

 break;

 }

 case DOTFIVE:{

 tilt *= 0.494140625;

 tilt = tilt<13 ? 0 : (tilt - 12);

 break;

 }

 default: break;

 }

 return tilt;

}

Figure 26. Actuator driving frequency modes

31

To leave blind spot of no reaction in the middle of joystick (marked by grey dotted line),

output values less than 10% of maximum are neutralized to zero. Values, greater than

blind spot threshold, have 10% subtracted. This ensures that all frequency instructions

to the driver are starting at the same logical level, as marked on the Figure 26.

After joystick hypotenuse is scaled, all instruction values are given to the transmission

buffer. Because radio module receives information by SPI one byte at a time, buffer is

defined as 8-bit variable array. The radio message is composed from 5 bytes. 16-bit

values of the direction angle and joystick incline are put in series; 8-bit signal union is

added at the end (Figure 27).

buffer[0] = ang >> 8;

buffer[1] = ang;

buffer[2] = str >> 8;

buffer[3] = str;

buffer[4] = signal.all;

The str and ang variables are truncated with bit shift, and assigned to the buffer just

before nrf24l01_write function call.

4.4 Robot driver

4.4.1 Architecture

Actuator driving system is designed to transform the human interface input into pres-

surizing pattern. Architecture of the robot driver is presented on the Figure 28. The in-

formation is received from the wireless module with SPI peripheral. During program

operation, timer module is continuously updated with pattern period value, which is

calculated from the received data. Timing of the actuators is performed in two separate

compare registers, providing independent intervals for each sink driver.

Figure 27. Radio message buffer

32

During robot movement, exhausted air is counted, and remaining air value is displayed

at the indicator. From time to time, air gauge information is saved to the internal

EEPROM memory. When system boots up again, this information is recalled and up-

dated.

Similarly to the remote control, brownout detector is set to prevent low voltage opera-

tion. Robot has switching digital power supply of 3.3 V; any input voltage other than

that is considered to be abnormal, meaning the switching regulator does not operate

properly. BOD level is placed to the closest setting of 2.7 V.

4.4.2 Main loop

Robot driver program program is a state machine implemented with while-loop. Instruc-

tions from the remote control are monitored with every loop rotation, and appropriate

actions are carried out. Compared to the 2.315 ms while-loop execution period of the

remote control, robot driver program rotates in 535 μs. It means that instructions are

executed faster than they are incoming, and control lag is really small.

Figure 28. Robot driver architecture

33

yes

no

yes

Start Startup delay

RF module
working?

Error message
Air value

Halt

Data
ready?

Joystick
tilted?

Signal
lost?

Read
data

Update actuator
frequency

3 seconds
passed?

Tank
reset?

Start timer

Stop timer
Empty actuators

Increment air value

Air value

Reset Initialization Write to
EEPROM

Read
EEPROM

Increment
air value

Shift pressure Timer interrupt Return

Delay 500μs

Stop timer

yes

no

no

yes

no

yes

no

Figure 29. Robot driver program flowchart

no

yes

34

Such kind of performance is achieved by moving most of the calculations to the remote

microcontroller. Flowchart of the program is presented on the Figure 29. Main loop se-

quence during robot locomotion is marked with thick black lines; operation during

standby is indicated with thick grey lines. Thin lines are expressing rare program opera-

tions.

System start-up is followed by a long delay of 150 ms. Like it was described in the

Chapter 4.3.2, this is necessary for the RF module to boot first, and for system voltage

level to settle. Because robot power supply is heavily filtered from the valve over-

shoots, it takes a while until big capacitors will charge (more information in Chapter

5.3.2).

EEPROM memory is accessed to recall previously saved tank depletion value (Chapter

4.4.3). Function module_check, explained in the Chapter 4.2.2, verifies nRF24L01

module response, and gives an error message in case of status register mismatch.

Error message is displayed at the indicator bar for 3 seconds, and then CPU is trapped

in the infinite loop, continuously displaying the air value. If radio module passes the

test, it is prepared for communication, and program advances into the main loop. Func-

tion show_air is called at the end of any loop sequence to show the current condition of

the air tank on the indicator (Figure 30). Air gauge is able to display the remaining air

with precision of 25% (Figure 31). When the air counter reaches the limit, the last LED

is blinking with a period of one second. In error message, top LED blinks 3 times a

second.

void show_air(uint16_t value)

Figure 30. Air indicator Figure 31. Air indicator states

35

Air counter, used with this function, is an unsigned 16-bit variable, which is used to

store the amount of chamber exhaustions. It is initialized as zero, and then overwritten

from EEPROM register.

uint16_t air = 0;

Every time there is a command to empty a number of chambers, this counter is incre-

mented by the same number. There are always 12 chambers pressurized at the same

time, so air is increased by 12, when actuator is fully exhausted by the joystick or con-

nection timeout. After each pressurizing pattern shift, during the timer interrupt, air

counter is increased by two (see Chapter 4.4.5). Maximum capacity of the gas tank is

experimentally found to be 3000 chambers. This value is split to the ranges of 750 and

compared with air counter in show_air command.

Before reading the transmission status, there is a 500 μs delay. The radio frequency

module could be read more often, but then the process of SPI communication would be

interfered by the timer interrupt more frequently, which is not wanted. Arrival of the new

radio packet is confirmed with nrf24l01_readready command:

_delay_us(500);

if(nrf24l01_readready(0)){ //check for new data from the pipe 0

 nrf24l01_read(buffer);

 heading = buffer[0] << 8 | buffer[1];

 incline = buffer[2] << 8 | buffer[3];

 signal.all = buffer[4];

 disconnect = 0; //reset the disconnect counter

flag.presave = 1;

 }

The fresh data from the remote control is collected from the buffer, and assigned to the

appropriate variables (Chapter 4.3.5 Driver instructions). Usually, new packet is coming

in four or five loop durations. In order to detect that remote is disconnected, disconnect

counter is incremented every time receiver is empty. When disconnect is more than 10,

the joystick parameters are reset.

36

else {

 disconnect += 1;

 if (disconnect > 10){ //no answer for too long time

 heading = 0;

 incline = 0;

 disconnect = 0;

 if (flag.presave){ //check if there was disconnect backup

 flag.presave = 0;

memory(air, 1); //save air

}

 }

}

Putting the joystick’s incline variable to zero stops the robot locomotion immediately.

Because it is more likely for signal to be lost when remote is switched off and work with

the robot is finished, air counter backup is made. Presave flag is used to make sure

that there is only one backup per each disconnect.

When joystick is outside of “blind spot”, incoming incline variable becomes more than

zero, and robot locomotion is enabled by starting the timer. During movement, timer

registers are updated using function timer_period, explained in the Chapter 4.4.4. New

register values are calculated from heading and incline variables. Flag eco is kept as

long as actuator is pressurized.

if (incline > 0){ //operating incline is received

 exhaust = 0;

 flag.eco = 1; //actuators are not empty

 timer_period(heading, incline); //update timer values

 TCCR1B |= (1<<CS12); //start timer with prescaler of 256

 if(flag.start){ // in case of first pressurizing

 OCR1B = 5787;

 OCR1A = 5787;

 flag.start = 0;

 }

}

First shift periods are calculated at the very moment joystick leaves the “blind spot”,

which means the smallest incline and therefore lowest frequency. This happens be-

cause joystick bar is not tilted immediately to the desired speed value, but in about third

of a second time. Longest wave pattern shift (0.83 s) would take place every time robot

starts to move. To prevent this effect, start flag is introduced. First values of the regis-

ters are set to 5787, which corresponds to the fastest pattern shift (0.18 s), giving time

37

for joystick bar positioning. Described functionality provides impression of immediate

robot reaction indeed.

When incline equals to zero, it means that signal is lost, or joystick is released. In this

case, timer is halted and robot locomotion is ceased. However, there is a high possibil-

ity for the robot operation to continue, and program waits about three seconds, before

actuators are emptied. This approach helps to save gas, and prevents excess jumping

of the robot during momentary joystick release.

else{

 TCCR1B = 0; //halt timer

if (flag.eco){exhaust += 1;} //if chambers are full, count loops for about

3 seconds before exhaust

 if (exhaust > 5000){

 TCNT1 = 0; //timer reset

 flag.start = 1; //next pressurizing should happen fast

 flag.eco = 0; //actuators are empty

 exhaust = 0;

 PORTC &= ~0x3F; //all valves are shut

 PORTB &= ~0xC0;

 PORTD &= ~0xF0;

 air += 12;

 rpos = 1; lpos = 4; //reset the pattern to the most stable one

 memory(air, 1); //backup the air counter

 }

}

It can be noted, that variables lpos and rpos, standing for the left and right actuator

pattern position respectively, are set to the various values. This is done before every

travelling session in attempt to increase balance of the robot frame. Figure 32 com-

pares two different cases of the chamber pressurizing:

Figure 32. Actuator area comparison

38

It is possible to improve locomotion balance of the Bubbler controller board, observed

in the Chapter 3.3.2. Compared to the previous initial pattern (marked blue on the pic-

ture), total actuator area is maximized, when chambers are swollen in the reciprocal

manner (red dashed line). Obviously, during actual motion with individual actuator

speeds, this situation is rare. Setting complementary initial pattern improves occur-

rence of this condition, and removes unwanted frame swinging in the beginning of lo-

comotion. More about robot balance can be found in the Section 6.1 of Mechanical

considerations.

At the end of the loop, air counter reset signal is monitored:

if (air > 60000) {air = 5000;} //preventing 16bit value from overflow

if ((signal.reset == 11)&&!(flag.reset)){ //reset signal just happened

 flag.reset = 1; //reset has been executed

 air = 0;

 memory(0, 1); //write zero to the EEPROM

 }

if (!signal.reset){flag.reset = 0;} //reset button has been released

When tank reset button at the remote is pressed for more than 3 seconds, reset signal

is detected, and all information about tank depletion is nullified. Reset flag is enabled to

prevent redundant overwriting of the EEPROM.

4.4.3 EEPROM memory

ATmega328P has 1 Kbyte of EEPROM memory, which persists during power off and

has an endurance of at least 100,000 write/erase cycles. To access the EEPROM reg-

isters, two specific functions were taken directly from the ATmega datasheet [5]:

uint8_t EEPROM_read(uint16_t uiAddress)

void EEPROM_write(uint16_t uiAddress, uint8_t ucData)

EEPROM_read function is used to read one byte from the 16-bit memory address in

the range from 0 to 1023. Function EEPROM_write erases the register, and writes the

byte into it. In contrast to reading function, which happens immediately, EEPROM

39

overwrite routine lasts 3.3 ms [5]. Interrupts should be disabled during memory pro-

gramming.

In the robot driver program, EEPROM access is done as rarely as possible and prefer-

ably during standby, to avoid interference with timer interrupts and prevent excess

erasing of memory registers. All routines are gathered into one universal memory func-

tion. It is called to write and to read 16-bit air counter data by truncating and assem-

bling value with bit shift. Argument io is used to select between read and write opera-

tion.

uint16_t memory(uint16_t bytes, uint8_t io){

 uint8_t pack[2];

 pack[0] = bytes >> 8;

 pack[1] = bytes;

 cli(); // disable global interrupts

 if (io){ // 1 write, 0 read

 EEPROM_write(500, pack[0]);

 EEPROM_write(501, pack[1]);

 while(EECR & (1<<EEPE)); //wait until write is finished

 }

 else{

 pack[0] = EEPROM_read(500);

 pack[1] = EEPROM_read(501);

 bytes = pack[0] << 8 | pack[1];

 }

 sei(); // enable global interrupts

 return bytes;

}

Output of this function can be ignored when using write feature, as well as input does

not matter when read feature is selected. Because EEPROM module operates inde-

pendently of the processor, write sequence is finished by polling the EEPE flag to hold

back CPU operation until memory is programmed.

4.4.4 Steering system

The main advantage of independent actuator driving is the ability to move the robot

frame in many directions. Slight turning motion can be performed by slowing down the

inner actuator while keeping outer actuator frequency intact. To make this happen,

40

program functionality, with output similar to the car differential, was implemented. Fig-

ure 33 demonstrates various modes used to drive actuator waves. Notice that it uses

transposed angle convention, explained in the Chapter 4.3.3. The area of the joystick

circle is divided into 8 zones of different sizes. Forward, backward and rotary motions

are performed by switching the actuator motion direction while varying speed symmet-

rically, according to the joystick bar incline.

Large white areas correspond to the differential actuator motion resulting in an arc tra-

jectory. When joystick is inclined into one of these zones, actuator marked with black

arrow is driven proportionally to the incline, while another one’s speed is additionally

scaled smaller with a greater angle from the vertical axis. This results in the directional

patterns shown at the Figure 34. Radius of turning movement decreases when joystick

is inclined farther to the side, eventually it becomes zero, and robot rotates around its

own centre.

Asynchronous motion is reliant on the pressurizing pattern period, calculated individual-

ly for each actuator. Function timer_period is used to calculate both periods from polar

coordinates of the joystick tip. Operating direction is narrowed down by comparing in-

put angle with ranges displayed at the Figure 33. Then global flags rdir and ldir are

written, to specify right and left actuator moving directions. Actuator interval is found by

multiplication of joystick’s incline value and a scaling factor.

Figure 33. Joystick steering modes Figure 34. Robot movement patterns

41

When received from the remote controller, incline data is already fit into one of speed

modes, indicated on a Figure 26 (Chapter 4.3.5). Dynamic ranges of freq_change func-

tion were selected in such way, that timer_period output will be limited by the chamber

periods of 0.183, 0.238 or 0.333 seconds. Total frequency of 6-chamber wave will be:

The scaling factor has a maximum value of 65. When joystick is in one of white areas

shown at Figure 33, scaling factor is equal to the angle from the closest rotary motion

zone. For example, at angle of 25 degrees scaling factor is equal 50, and for -135 de-

grees it equals 30. At zones of synchronous actuator motion, scaling is not necessary,

and factor is fixed at 65. Product of incline and scaling factor is subtracted from the

number 26067, which stands for the maximum chamber period (Figure 35).

The driving period calculation can be generalized as: “For lower speeds, joystick incline

value is further reduced, resulting in longer periods and lower driving frequency”.

void timer_period(int16_t ang, uint16_t str){

 if ((ang > -75) && (ang < 75)){ // forward motion

 flag.rdir = 1; // both actuators are set forward

 flag.ldir = 1;

 if ((ang >= -10) && (ang <= 10)){ //synchronous forward

 temp.right = 65 * str;

 temp.left = temp.right; //periods are equal

 }

 else{

 if (ang > 0){ //northeast differential

 temp.angle = 75 - ang;

 temp.right = temp.angle * str;

 temp.left = 65 * str;

 }

 else{ //northwest differential

 temp.angle = 75 + ang;

Figure 35. Timer period calculation

42

 temp.left = temp.angle * str;

 temp.right = 65 * str;

 }

 }

 }

 if ((ang > 105) || (ang < -105)){ // back motion

 flag.rdir = 0; // both actuators are set backward

 flag.ldir = 0;

 if ((ang >= 170) || (ang <= -170)){ //synchronous backward

 temp.right = 65 * str;

 temp.left = temp.right; //periods are equal

 }

 else{

 if (ang > 0){ //southeast differential

 temp.angle = ang - 105;

 temp.right = temp.angle * str;

 temp.left = 65 * str;

 }

 else{ //southwest differential

 temp.angle = ang + 105;

 temp.angle = -temp.angle;

 temp.left = temp.angle * str;

 temp.right = 65 * str;

 }

 }

 }

 if ((ang >= 75) && (ang <= 105)){ // rotation clockwise

 flag.rdir = 0; //actuators are driven in reverse

 flag.ldir = 1;

 temp.right = 65 * str;

 temp.left = temp.right; //periods are equal

 }

 if ((ang >= -105) && (ang <= -75)){ // rotation counterclockwise

 flag.rdir = 1; //actuators are driven in reverse

 flag.ldir = 0;

 temp.right = 65 * str;

 temp.left = temp.right; //periods are equal

 }

 clean.right = TMAX - temp.right; //subtract from maximum interval

 clean.left = TMAX - temp.left;

}

Structure, named clean, is used to gather final period results. To be safely accessed

from the timer interrupt, these global variables are updated once, in the end of calcula-

tion. This prevents left and right period mismatch in case interrupt happens in the mid-

dle of the calculation.

43

4.4.5 Actuator timing

Timer peripheral of ATmega328P is utilized to clock the actuator periods. Like in

MSP430 and many other microcontrollers, timer can be configured to generate inde-

pendent time intervals. ATmega’s 16-bit Timer1 module is clocked from the main RC

oscillator. Frequency of the timer ticks can be modified with clock prescaler. In this ap-

plication, prescaler is set to divide the processor clock by factor of 256, resulting in the

32 μs tick at 8 MHz CPU.

Two capture registers, OCR1A and OCR1B are used to generate pattern periods for

left and right actuator respectively. During normal operation, Timer1 module compares

its counter value with both capture registers every tick. Corresponding interrupt request

is generated at register value match. When interrupt happens, current CPU operation is

postponed, and instruction situated at interrupt vector address is executed. During this

subroutine, pressurizing bit pattern is shifted to one position, in the direction defined by

actuator dir flag. Each interrupt, position counter pos is incremented by one.

ISR(TIMER1_COMPA_vect){ // left actuator Interrupt Service Routine

 if (flag.ldir) {lpos -= 1;} // wave direction is opposite to motion

 else {lpos += 1;}

 if (lpos > 6) {lpos = 1;} // position is changed periodically

 if (lpos < 1) {lpos = 6;}

 switch (lpos){

 case 1:{ PORTC &= ~0x38; //00 000111

 PORTC |= 0x07;

 break;}

 case 2:{ PORTC &= ~0x31; //00 001110

 PORTC |= 0x0E;

 break;}

 case 3:{ PORTC &= ~0x23; //00 011100

 PORTC |= 0x1C;

 break;}

 case 4:{ PORTC &= ~0x07; //00 111000

 PORTC |= 0x38;

 break;}

 case 5:{ PORTC &= ~0x0E; //00 110001

 PORTC |= 0x31;

 break;}

 case 6:{ PORTC &= ~0x1C; //00 100011

 PORTC |= 0x23;

 break;}

 default: break;

 }

 air += 2;

44

 OCR1A += clean.left; // pick up next time period

}

It is important to drain supply current as little as possible. When bit pattern is changed,

unneeded valves are shut first, and new ones are energised after. In one interrupt rou-

tine two chambers are pressurized, two chambers are exhausted, and air counter value

is incremented by 2.

New period value is added to the OCR register, so that next interrupt will be requested

after fresh amount of ticks. The timing operation is illustrated at the Figure 36:

When sum of OCR register value and new period is bigger than 65535 (216), register

overflows, keeping the overhead. Timer counter TCNT1 register also overflows when

the maximum 16-bit value is reached. Combined with the remote control sampling rate,

the timer_period function provides new values at least 370 times a second.

Example of the timing from the joystick readings is demonstrated in the picture: when

joystick is slightly tilted forward at angle of zero degrees, actuators are driven synchro-

nously; if joystick is inclined to the right, left actuator is going at full speed and right

actuator is slowed down, resulting in the turning motion.

Figure 36. Actuator timing operation

45

5 Electrical design

5.1 KiCAD

PCB layouts of remote control and robot frame were designed using KiCAD electronic

design automation software. KiCAD is an open source software suite, which includes

schematic editor, printed circuit board editor, and large component footprint database.

It can be used to create complex designs; however, it was selected by me because of

its simplicity and availability. Like most design automation tools, KiCAD is user friendly

and easy to master. Most helpful features are as follows:

 Flexible footprint system, where any schematic component can be associated to

any footprint

 Precise plotting algorithm allows easily print fine 1:1 scale copper layouts for etch-

ing

 Drill map generation (see chapter 7.1)

Figure 37. KiCAD Pcbnew PCB Layout editor

46

5.2 Remote control

Power source for the remote control is select-

ed to be a pair of AAA batteries. Judging by

the list of the components presented in the

Table 2, supply voltage range is wide, and

allows for 3 V operation. It is also safe to use

alkaline batteries, because their characteristic

depleting of voltage with time is acceptable in

this case.

ATmega supply current is drawn in very short spikes on the clock edges [6]. In order to

compensate high frequency current spikes, decoupling capacitor of value 100nF is

placed as close as possible to the supply pins of the microcontroller. NRF24L01+ mod-

ule has decoupling capacitors mounted on-board, so the transceiver digital circuitry is

safe as well. To provide additional pool of immediate charge for the circuit, one polar-

ized 2.2 μF capacitor is connected in parallel to the supply pins. Analogue reference

pin Aref is connected to the ground through 100 nF capacitor, and traced separately

from microcontroller digital ground, according to the guidelines given in the datasheet

[5]. AVcc pin, used as voltage source for ADC, is connected to the Vcc pin directly

without low pass filter. During conversion, ADC module relies to decoupling capacitor

on the digital supply, while CPU is in sleep mode (Chapter 4.3.3). Described approach

does not require additional components, and joystick readings are kept precise enough.

Joystick potentiometers are connected to the

ground and supply lines in such manner, that

ADC readings will be increasing from right to left

and from bottom to top, resembling Cartesian

coordinate plane (Figure 38). Buttons are read

active low by the microcontroller. This functionali-

ty is implemented with ATmega328P internal pull-

up resistors, reducing the need of mounted com-

ponents. When button is released, pin is con-

nected to the supply through the high-value resis-

tor in series, resulting in the logical high on the input. When button is pressed, micro-

controller pin is shorted to the ground, putting active low in the PIN register, and excess

Element Operating voltage, V

ATmega328P 1.8 – 5.5

nRF24L01+ 1.9 – 3.6

LED 2.2

Joystick Any

Table 2. Remote control voltage demand

Figure 38. Joystick and buttons

47

voltage is left across the pull-up resistor. The 30 kΩ pull-up resistor is connected to

reset pin of the ATmega, providing constant logical high

state.

Three light-emitting diodes are forming the indicator. Efficient

15 mA diodes were selected for this purpose. Current limit-

ing resistors of 100 Ω are placed in series (Figure 39).

Main SPI signal lines do not intersect and are kept

as short as possible. For this purpose, radio mod-

ule was placed as close as possible to the ATmega

SPI I/O. Interrupt request (IRQ) and receive-

transmit chip enable (RXTXCE) are not switching

on high frequency during operation, thereby they

are low-priority and connected above the copper

layer (Figure 40). NRF24L01 connector is placed

as close to the border as possible. Mounted mod-

ule is reaching out the PCB area to avoid signal

attenuation and reflections off copper layer.

5.3 Robot

5.3.1 Solenoid valve drive

Robot actuator control is based on CKD 3MB0 pneumatic

solenoid valve. To pressurize actuator chambers in desired

pattern, two arrays of 6 valves each are used. During robot

movement, 6 solenoids are energized at the same time.

Driver firmware ensures that not more than 6 valves are

active at the same time, preventing excess current draw

(Chapter 4.4.5). Each 3MB0 valve is powered with 5 V DC,

using energy of 1 W. By the electric specifications provided

in the catalogue [12], applicable voltage can vary ,

defining wide operating range of 5.5 – 4.5 V. Maximum

electric current, drawn by the solenoid system is found as:

Figure 39. LED indicator

Figure 40. nRF24L01 connection

Figure 41. CKD 3MB0
pneumatic valve

48

To provide portable power source for such load, research on the battery elements was

conducted.

Voltage delivered by battery elements is reduced with discharge. Because of that, du-

ration and range of useful supplied voltage should be considered individually for each

application. There is clear tendency of batteries to deliver less charge if load current

exceeds Ampere-hour rating of one hour. It means, that useful capacity of the battery

decreases, if charge depletes too fast.

Internal resistance of the battery cell also

should be recognized, as large loads

cause bigger internal voltage drop.

Despite tiny internal resistance, alkaline

batteries are the worst choice for this ap-

plication, showing really steep voltage

decrease if current demand is close to the

capacity rating. Batteries with larger ca-

pacity are heavier and require more space.

Nickel metal hydride (NiMH) batteries

have demonstrated good longevity and

insignificant voltage drop, even when sup-

plying large currents. Figure 42, borrowed from stefanv.com [13], presents 1.2 A dis-

charge curve of 4 NiMH Eneloop AA batteries by Sanyo. As we can see from the

graph, 4-battery pack is theoretically capable of driving the 6 valves for 80 minutes,

until lowest applicable voltage of 4.5 V is reached. Region of slightly excess voltage

during first two minutes is neglected. Total internal resistance of four Eneloop batteries

is estimated 0.384 Ω [13]. Eneloop, being the good solution for a portable supply, was

purchased and utilized in the system.

Due to the limited capability of ATmega ports, in order to operate pneumatic valves,

sink drivers of the same model as in Bubbler control board were used. Structure of the

Toshiba TD62003 driver is presented at Figure 43. Driver is based on a Darlington pair,

and has clamp diodes between each output and Vcc for switching inductive loads [14].

Figure 42. Sanyo’s Eneloop discharge test.
Horisontal axis – time in minutes,
vertical axis – voltage in volts

49

There is a certain negative effect related to the

operation of solenoid. Current surge happens,

when large inductive load of valve is de-energized

with a switch, cutting the high DC current path. To

prevent overvoltage across the switch and provide

way for the current, clamp diodes are present in

the system. However, returning current is bounced

back at the Vcc node, momentarily increasing the supply voltage (Figure 44).

Zener diodes are utilized as surge suppressor, by definition conducting reverse current

starting from Zener voltage Vz. Four NiMH batteries’ maximum possible voltage is as-

sumed to be less than 6 V at full charge. Surge suppressor diode is selected in such

way that threshold is not too high for nominal Eneloop voltages of 4.8 V and not too low

for the fresh charge, because in that case suppressor will start to discharge batteries.

In this application, two 6 V Zener diodes with power rating of 5 W were chosen. Each

suppressor can withstand short current spikes up to 12.7 A.

Figure 43. Sink driver structure

Figure 44. Surge suppressor operation

50

On the PCB, Zener diodes are placed very close to the drivers, ensuring that big spike

does not propagate to the other part of the system (Figure 45).

The solenoid valves are connected individually to the male DIP port, located next to the

Toshiba TD62003 driver (Figure 46).

5.3.2 Digital power supply

Control circuitry voltage demand is of the same order as presented on Table 2. To set

up fail-proof voltage supply in the system powered with a battery pack, TI LM2594

switching voltage regulator is used. This integrated circuit provides active functions for

a buck regulator, operating on a fixed frequency of 150 kHz. Texas Instruments

LM2594 datasheet [15] gives extensive guidelines on its application, thereby simplify-

ing the electrical design procedure. Figure 47, borrowed from the datasheet, pictures

the typical circuit of the step-down regulator:

Figure 47. LM2594 circuit

Figure 45. Solenoid driver Figure 46. CKD 3MB0 valve connection

51

Values of inductor L and capacitors Cin, Cout selected from the datasheet tables [15].

Recommended value of L is 68 nH, Cout and Cin are 180 nF and 68 nF respectively.

Assuming maximum input voltage to be 5.5 V, lowest duty cycle for 3.3 V output should

be 0.6. Predicted output voltage ripple is calculated with buck regulator formula:

()

()

Such voltage ripple is acceptable, so selected components were included in design.

Solenoid voltage surge, explained in the

previous chapter, was analysed. Figure

48 displays oscilloscope readings from

the Bubbler controller board supply. In 6

valves’ shutdown transition, overshoot

magnitude is bigger than 1 V, and ringing

period is about 3 μs is present. Using only

surge suppressor does not eliminate most

of these problems, but only inhibits the

spikes to exceed the 6 V level. By so-

called “belt and braces” principle, digital voltage supply is additionally isolated from the

outer 5 V circuit with a low-pass filter. Estimated ringing frequency is ⁄ .

For good attenuation, filter cut-off frequency was selected to be in order of two decades

below the transition effect, say, 2 kHz. Utilizing the 68 nF Cin capacitor of the voltage

supply as the component of LC-filter, closest value of the filter inductor will be 100 nH,

providing us with cut-off frequency fc
:

 √

 √

To prevent possible oscillations on the filter, small critical damping resistor was added

in series between inductor and power supply node.

Figure 48. Solenoid voltage surge

52

Value of damping resistor is determined

as:

 √

 ⁄ √

Filtered transition shape is presented in

the Figure 49. The transient from 4.7 V to

5 V seems to be over damped, but is

more acceptable than previous situation.

More efficient way of removing voltage

surge could be implemented; yet, given filter is good enough to protect the radio mod-

ule and microcontroller.

Following the layout guidelines from the LM2594

datasheet [15], ground and heat sink planes were

included into PCB design, as shown on the Fig-

ure 50. NC pins 1, 2 and 3 of regulator are put

together to the unconnected copper polygon for

heat dissipation. Ground pins 5 and 6, as well as

Schottky diode and capacitors cathodes, are in-

terconnected into one ground copper area for

better conductivity.

To minimize magnetic noise caused by high current in the pneumatic valve wires, pow-

er line loop areas are minimized, as shown on the Figure 51. Two upper traces are

supplying the left solenoid array, and two lowest are powering the microcontroller from

the digital supply. Thickness of power traces was determined by rule of thumb: one

millimeter width for current of one Ampere. Total system current is coming by 1.5 mm

width track from the screw terminal to the power switch pin. Each solenoid array is

powered with 1 mm tracks; every other trace is of default 0.8 mm width. Solenoid

ground and digital ground are separated from each other, and connected only through

the ground plane of the digital power supply.

Figure 49. Solenoid surge after filtering

Figure 50. Heat and ground planes

53

Green LED, connected directly to the digital power supply through 100 Ohm serial re-

sistor, indicates the power-on state of the device. Microcontroller, LED gauge and radio

module are treated identically as in the remote controller (see Section 5.2).

6 Mechanical considerations

6.1 Robot balance

Balance of the robot frame was estimated roughly and managed by positioning the

component shapes in the KiCAD.

The main problem of robot balance is the length of the gas supply, being the largest

element in the system. It is also the heaviest, 551 g when empty and 569 g when full.

Gas supply сenter of mass position was

approximated experimentally, being right

in between flow controller and gas tank

(red dashed line in the Figure 52).

Because pressure valves and actuators

are mounted to the frame symmetrically,

gas supply was attached with the center

of mass line in the middle of the PCB. Four Eneloop batteries add additional 108 g at

the rear. Compared to the total weight of the robot excluding actuators being 1043 g,

Figure 51. Power lines

Figure 52. Gas supply mass distribution

54

batteries are about 10% of the mass. Due to this small misbalance, line of equilibrium

is shifted towards battery holders together with actuator midpoint, marked with a blue

dashed line on the Figure 53:

Midpoint of gas supply and valve arrays is noted by the red dashed line.

Printed circuit board is elevated above actuators with 8 mm

spacers (Figure 54). This prevents the trough-hole compo-

nent legs from the short circuit, but does not improve situa-

tion with high center of mass, same of Bubbler controller

board, described in the Chapter 3.3.1.

Balance can be upgraded further by using only surface

mounted electronic components and fixing the actuators

tight to the board.

6.2 Pneumatic circuit

The crawling robot utilizes exactly the same pneumatic circuit used in the Bubbler con-

troller board. Its schematic diagram is presented in the Figure 55. The connection is

quite straightforward, actuator chambers are connected to the valves in recurring man-

ner, simplifying periodic pattern generation.

Gas from the tank is delivered to the system through the flow control valve. Operating

pressure of the actuators is in range from 0.15 – 0.3 MPa. Solenoid valves do not re-

strict flow, and deliver all pressure to the chambers, when energized. When switched

off, valve exhausts the actuator port to atmosphere, setting chamber to zero MPa.

Figure 53. Robot frame equilibrium

Figure 54. 8-mm spacers

55

Volume of the tank chamber is 95 ml. Initially, N2 tank has 15.2 liters of gas, resulting in

absolute pressure 16 MPa, or 15.9 MPa gauge pressure (relative to the atmosphere).

Gas, drained from the tank is monitored in robot firmware by counting the number of

exhausted chambers.

Using chamber dimensions provided in the Section 3.1 Figure 4, volume of one cham-

ber can be found as
 . When actua-

tor chamber is filled with compressed air, it increases in size and expands the volume.

To detect, how much gas is used for one chamber, depleting experiment was carried

out. Air balloon of 24 l volume was emptied by continuous pressurizing of actuator

chambers, until internal air pressure dropped from 0.725 MPa to 0.425 MPa, totaling in

0.3 MPa pressure drop. Overall amount of pressurized chambers, counted by robot

firmware, was 14466. The volume of inflated chamber can be found by division:

This means that inflated chamber expands for 173% of initial volume. Working capacity

of the portable N2 gas tank at 0.3 MPa in terms of inflated chambers can be calculated

as:

Figure 55. Pneumatic circuit

56

This value is rounded down to 3 thousand for use with the air gauge, explained in

Chapter 4.4.2. If actuators are driven with constant frequency of, for example, 0.7 Hz,

the gas flow rate will be

 ⁄

and tank would be capable to supply the gas for

Gas tank life for the frequencies of 0,9 Hz and 0,5 Hz is 141 s and 254 s respectively.

Obviously, lower driving frequencies drain less gas at a time.

7 Device assembly

7.1 PCB manufacturing

Printed circuit boards for the robot and remote were manufactured by chemical etching.

Sunhayato one-sided photosensitive boards were available for selection, and appropri-

ate ones were picked. Prior to the manufacture, PCB layout was optimized for the de-

cided surface area, and pads sizes were reconfigured to resist chemical undercut.

For the remote control, smallest 1.6 x 75 x

100 mm board from phenolic paper (FR-1)

was selected (Figure 56, on the left). Its

small system footprint and trivial operation

are implemented beneficially, using cheap-

est available board.

Basic robot footprint is at least 170 mm

wide and 100 mm long. Conventional size

of 150 x 200 mm was selected, allowing

wider component distribution (Figure 56, on the right). Due to the heavy components

such as gas tank and solenoid valves, strong glass-reinforced epoxy laminate (FR-4) of

Figure 56. Photosensitive boards

57

1.6 mm thickness was used. Its flexural strength, announced by manufacturer, ranges

from 440 to 540 MPa, which is four times stronger than that of FR-1 (110 MPa).

Copper layer stencil is printed on special OHP paper (Figure 56) to transfer the layer

pattern to the PCB. This was done using special light box, displayed at the Figure 57

Photosensitive board is exposed in UV light for period defined with digital timer, usually

90 seconds. Once the pattern is transferred, photosensitive layer is chemically re-

moved with Natrium Hydroxide (Figure 58). After this, board is submerged into etching

tank with Ferric Chloride solution, where etchant is warmed up to 40 degrees Celsius,

and agitated with bubbles to speed up the etching process (Figure 59).

Dark areas of the board are not affected by etchant, and are removed by full board

exposure after etching is done. Surplus area of the robot PCB was cut out, leaving

frame of 119 x 200 mm in size.

Drilling of the holes was done manually using desk drill press. Figure 60 illustrates

copper halos and manual puncture made to assist the drill positioning.

Figure 57. Light box Figure 58. Pattern development

Figure 59. Etching tank Figure 60. Drilling halos

58

Drill map, generated by KiCAD software,

has proven itself to be helpful as a

lookup table during manual drilling of

hundreds of holes (Figure 61).

Components have been soldered to the

PCB by hand. Undercut traces, whose

were reduced in size during etching process, were made thicker manually with solder.

In general, only trough hole components have been purposely selected for the ease of

hand assembly.

7.2 Bill of materials

Total cost of electronics components, used in the robot system is estimated and pre-

sented in the Table 3:

Table 3. Bill of materials

Picture Qty. Product name
Price, yen

per pcs. total

2 8-connector female 2.54 mm pitch 130 260

2 12- connector male 2.54 mm pitch 209 418

2 Toshiba TD62003 driver 7 ch DIP-16 107 214

2 DIP-28 socket 81 162

2 DIP-16 socket 44 88

Figure 61. Robot drill map

59

1 Holder for 2 AAA batteries 119 119

1 Tactile switch SPDT 0.05A 12V 12 12

1 Toggle swtich SPDT 0.4VA 20V 347 347

1 Toggle switch SPDT 5A 120V 335 335

1 Diode Shottky 1N5817 20V 1A 51 51

1 TI LM2594N-3.3 regulator 0.5A 8-DIP 350 350

1 Inductor 68uH 0.40A 34 34

1 Inductor 100uH 1A 68 136

2 Holder for 2 AA batteries 216 432

1 Aluminium capacitor 68uF 10V 20% 56 56

1 Aluminium capacitor 180UF 25V 20% 56 56

60

1 DIP-8 socket 22 22

1 LED diffused green 568nm 17 17

3 LED diffused red 625nm 17 51

2 Screw terminal 2 3.5mm 89 178

1 Zener diode 1N5340B 6V 5W 63 126

8 Resistor 100 Ohm 9 72

2 Resistor 30 kOhm 9 18

1 Quad LED indicator red diffused 145 145

3 Film capacitor 0.1uF 33 99

1 Aluminium capacitor 2.2 uF 50V 26 26

1 Resistor 2.4 Ohm 1W 5% 39 78

61

1 2 axis joystick potentiometer w/ button 561 561

2 AAA Battery Alkaline Panasonic 1.5V 39 78

1
AA Battery Rechargeable NiMH 1.2V Eneloop

4-pack
1925 1925

1
Sunhayato Photo sensitive copper board FR-

1 1.6t 75x100 mm
494 494

1
Sunhayato Photo sensitive copper board FR-

4 1.6t 150x200 mm
2058 2058

2 Atmel ATmega328P 28DIP 8-bit MCU 340 680

2 nRF24L01+ 2.4GHz module 1090 2180

Total 11771

It should be considered that bill of materials does not include prototyping and manufac-

turing cost. Some of listed materials are provided by the Akita National College of

Technology.

8 Results

Construction according to design has been successful, resulting in finely running actua-

tor control system. Robot and joystick have been tested and evaluated. Operating

specifications of both devices are listed in the Table 4:

62

Table 4. Operating specifications of the mobile robot system

Remote control is powered by alkaline batteries, but any kind of AAA battery will do, as

long as voltage requirements are met. Robot width is provided including the actuator

tubing which extends to the sides. Photographs of the final assembly are presented in

the Figures 62 – 67:

 Remote control Robot

Dimensions (W x L x H), mm 96 x 114 x 47 300 x 197 x 75

Weight, g 67 1137

Operating voltage, V 1.9 - 3.6 4.6 - 5.5

Supply current, mA 19 @ 3.0V 82 (824) @ 4.8V

Battery element 2 x AAA 1.5V 4 x AA NiMH 1.2V

Figure 62. Robot, top view Figure 63. Remote control, top view

Figure 64. Robot, bottom view Figure 65. Remote control, bottom view

63

Components of the remote are located in such way, that it is easy to hold and operate

even with one hand. However, tank reset button is purposely placed behind the joystick

bar, so it is difficult to reach it accidentally. Wire terminals, power switch positions and

indicators of both boards are marked with adhesive labels.

The operating range of the radio link was tested in the college corridor and laboratory.

Direct open range in the corridor is 74 meters; range through the concrete wall with

steel security door of thicknesses 15 mm and 6 mm respectively is found to be 17 me-

ters. Results show, that robot control operation is reliable and practically can be limited

only by user’s line of sight.

N2 gas tank longevity is proven to be estimated correctly. Approximately after three

minutes of normal speed motion, the air gauge gives a depletion signal by blinking the

light, and before long, tank capacity runs out.

Robot travelling tests were conducted on the flat surface covered by paper. The friction

ratio between actuator silicon and paper is exactly 0.5. Operating pressure of 0.2 MPa

was applied to the actuator during the experiment. Speed versus frequency plot is pre-

sented in Figure 68.

Figure 66. Robot front view Figure 67. Remote control front view

64

Compared to the previous travelling experiment data, given at Figure 7 in Section 3.1,

these results show significant improvement in the travelling speed. Having same fric-

tion coefficient, this time actuators are carrying larger mass and have bigger amplitude

due to higher operating pressure (previous tests are made at 0.15 MPa)

These results prove the assumption of increased step feed due to amplitude, and gen-

erally comply with theory of rectilinear locomotion, presented in the Section 3.2.

9 Conclusion

Harmonious operation of the controller system and controlled system involves fail-proof

algorithms, with handling of many details and situations. This applies to the relationship

between programs of different hierarchy, as well as to human – device interaction.

Interface of actuator is heavily dependent on the physical model, which is used to

adapt output action to the input of the control system.

The bubbler actuator has demonstrated unusual way of transforming energy into mo-

tion. While it is not so efficient for straightforward portable application, it successfully

imitates the nature. Observed details are summarized as follows:

0

1

2

3

4

5

6

7

0 0,2 0,4 0,6 0,8 1

Figure 68. Speed (mm/s) versus driving frequency (Hz)

65

Pros:

 Operation, by itself, is silent

 Waterproof and dustproof

 Compliant body, does not damage surface and has shape-adaptability

 Thin

 High load-to-weight ratio

Cons:

 Drains compressed air relatively fast

 Quite slow for most travelling appliances

Possible applications:

 Amphibian, cleaning of wet places

 Surgical remote and invasive diagnostics tool

10 Self-assessment

In this project I have introduced myself with the nature of robotics. Making of an auton-

omous system from analogue input to analogue output, with digital processing in be-

tween, have not been an easy task. During the research, many things have come in

handy, and even more information was barely useful.

Actuators and driver algorithms were completely new for me, same for the portable

systems. Now I am more fluent in embedded systems, battery operation, and design of

various power supplies is not a problem anymore. A lot of creativity was put into actua-

tor application, and for most of ideas, debugging and correction took place, revealing

my own mistakes. A lot of programming-related tricks have been learned.

Most of all I appreciate to get in touch with pneumatics. The similarities between elec-

tronic and pneumatic operations have provided me with new insights.

Working alone in another country has improved my “project survivability”. I have re-

vised own self-management, and learned to set priorities. Selecting only necessary

66

materials and make something with that little I have at hand, gave me more independ-

ence in whatever I was doing.

I thank Professor Tanaka and Professor Yamazaki for giving electrical hints; head of

the Robot club Mr. Kobayashi for help with manufacturing circuit boards; and especial-

ly, Professor Miyagawa for exceptional supervision and inspiration.

67

References

1 Koichi SUZUMORI. Pneumatic Rubber Actuator Driven by Elastic Travelling
Waves, JSME International Journal Series C, Vol. 42, No. 2, 1999

2 Caterpillar kinematics. John Brackenbury, Nature 390, 453 (4 December 1997)
doi:10.1038/37253

3 Marvi H, Bridges J, Hu DL. 2013 Snakes mimic earthworms: propulsion using recti-
linear travelling waves. J R Soc Interface 10: 20130188.
dx.doi.org/10.1098/rsif.2013.0188

4 Kinematics of Soft-bodied, Legged Locomotion in Manduca sexta Larvae Biol.
Bull.212:130 –142. (April 2007)

5 Atmel 8-bit Microcontroller with 4/8/16/32KBytes In-System Programmable Flash
[DATASHEET] 8271G–AVR–02/2013

6 Atmel AVR042: AVR Hardware Design Considerations APPLICATION NOTE
2521L−AVR−07/2013

7 nRF24L01 Single Chip 2.4GHz Transceiver datasheet version 2.0, July 2007
www.nordicsemi.com/eng/nordic/download_resource/8041/1/42116424

8 avr nRF24L01 library running on atmega - v.02 davidegi-
roni.blogspot.jp/2012/09/avr-nrf24l01-library-running-on-atmega.html

9 Math resources for MSP430G2553 – TI E2E Community forum
e2e.ti.com/support/microcontrollers/msp430/f/166/p/248760/916614.aspx

10 Off on a tangent : a look at arctangent implementations, Jasper Vijn
www.coranac.com/documents/arctangent/

11 Titi Trandafir. Fixed Point Two’s Complement CORDIC Arithmetic on MSP430
www.microtrendsys.com/ATC2004.pdf

12 CKD 3MA0/3MB0 3 port direct acting valve catalogue
ckd.co-site.jp/ad/biochemical/Catalog/3M-Series.pdf

13 Review: Testing Sanyo’s Eneloop Low Self-Discharge Rechargeable Battery
www.stefanv.com/electronics/sanyo_eneloop.html

14 Toshiba TD62003APG 7-channel Darlington Sink Driver
www.toshiba.com/taec/components2/Datasheet_Sync/200910/DST_TD62003APG-
TDE_EN_11444.pdf

15 Texas instruments LM2594/LM2594HV Datasheet, SNVS118C – DECEMBER
1999

Appendix 1

1 (3)

Remote control program code

#define F_CPU 8000000UL

#define CLR 0x07

#define DOTNINE 0x01

#define DOTSEVEN 0x02

#define DOTFIVE 0x04

#define ABS(x) x>0 ? x : -x

#define ROT180 32760

#define ROT90 16380

#include <avr/io.h>

#include <avr/interrupt.h>

#include <math.h>

#include <util/delay.h>

#include <avr/sleep.h>

#include <nrf24l01.h>

#include <spi.h>

int16_t pot[2], str, ang;

uint8_t buffer[5], ack, press = 0, state = DOTSEVEN, lost;

const signed int atanAngles[14] = {

 0x12E3,

 0x09FB,

 0x0511,

 0x028B,

 0x0146,

 0x00A3,

 0x0051,

 0x0029,

 0x0014,

 0x000A,

 0x0005,

 0x0003,

 0x0002,

 0x0001

};

struct time{

 uint8_t lost;

 uint16_t reset;

 } delay;

union control

{

 uint8_t all;

 struct

 {

 uint8_t reset:4;

 uint8_t unused:4;

 };

};

Appendix 1

2 (3)

union control signal;

void module_check();

void InitADC();

uint16_t ReadADC(uint8_t ADCchannel);

void cordic(int16_t x, int16_t y, int16_t *angle, int16_t *hypotenuse);

int16_t freq_change(uint8_t factor, int16_t tilt);

EMPTY_INTERRUPT(ADC_vect);

int main(void)

{

 _delay_ms(15);

 DDRD |= 0x07 ;

 PORTD |= 0xC0 ;

 module_check();

 nrf24l01_init();

 InitADC();

 PORTD &= ~CLR

 signal.all = 0;

 sei();

 while(1)

 {

 pot[0] = ReadADC(0);

 pot[1] = ReadADC(1);

 pot[0] -= 512;

 pot[1] -= 512;

 cordic(pot[1], pot[0], &ang, &str)

 str = str>512 ? 512 : str;

 str = freq_change(state, str);

 buffer[0] = ang >> 8;

 buffer[1] = ang;

 buffer[2] = str >> 8;

 buffer[3] = str;

 buffer[4] = signal.all;

 ack = nrf24l01_write(buffer);

 if(ack){

 PORTD |= state;

 delay.lost = 0;

 }

 else {

 delay.lost += 1;

 if (delay.lost > 60){

 PORTD ^= state;

 delay.lost = 0;

 }

 }

 if(!(PIND & 0x80)){ press = 1; }

 if((press)&&(PIND & 0x80)){

 press = 0;

 PORTD &= ~CLR;

 switch (state){

 case DOTFIVE:{

 state = DOTSEVEN;

 break;

Appendix 1

3 (3)

 }

 case DOTSEVEN:{

 state = DOTNINE;

 break;

 }

 case DOTNINE:{

 state = DOTFIVE;

 break;

 }

 }

 }

 if(!(PIND & 0x40)){

 delay.reset += 1;

 if (delay.reset > 1000){signal.reset = 11;}

 }

 else {

 signal.reset = 0;

 delay.reset = 0;

 }

 }

}

Appendix 2

1 (3)

Robot driver program code

#define F_CPU 8000000UL

#define TMAX 26067

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/sleep.h>

#include <util/delay.h>

#include <nrf24l01.h>

#include <spi.h>

union control

{

 uint8_t all;

 struct

 {

 uint8_t reset:4;

 uint8_t unused:4;

 };

};

union control signal;

struct slots {

 uint8_t rdir:1;

 uint8_t ldir:1;

 uint8_t eco:1;

 uint8_t start:1;

 uint8_t reset:1;

 uint8_t presave:1;

 uint8_t unused:2;

 } flag;

uint8_t buffer[5];

volatile uint8_t rpos = 1, lpos = 4, disconnect = 0;

int16_t heading;

uint16_t air = 0, incline, exhaust = 0;

struct timing {

 uint16_t left;

 uint16_t right;

 int16_t angle;

 };

struct timing temp;

struct timing clean;

void show_air(uint16_t value);

void EEPROM_write(uint16_t uiAddress, uint8_t ucData);

uint8_t EEPROM_read(uint16_t uiAddress);

uint16_t memory(uint16_t bytes, uint8_t io);

void timer_period(int16_t ang, uint16_t str);

void module_check(uint16_t post)

Appendix 2

2 (3)

ISR(TIMER1_COMPA_vect);

ISR(TIMER1_COMPB_vect);

int main(void)

{

 _delay_ms(150);

 DDRD |= 0xFF;

 DDRB |= 0xC0;

 DDRC |= 0x3F;

 air = memory(0, 0);

 module_check(air);

 TIMSK1 = (1 << OCIE1A)|(1 << OCIE1B);

 nrf24l01_init();

 flag.start = 1;

 flag.reset = 0;

 while(1)

 {

 _delay_us(500);

 if(nrf24l01_readready(0)){

 nrf24l01_read(buffer);

 heading = buffer[0] << 8 | buffer[1];

 incline = buffer[2] << 8 | buffer[3];

 signal.all = buffer[4];

 disconnect = 0;

 flag.presave = 1;

 }

 else {

 disconnect += 1;

 if (disconnect > 10){

 heading = 0;

 incline = 0;

 disconnect = 0;

 if (flag.presave){

 flag.presave = 0;

 memory(air, 1);

 }

 }

 }

 if (incline > 0){

 exhaust = 0;

 flag.eco = 1;

 timer_period(heading, incline);

 TCCR1B |= (1<<CS12);

 if(flag.start){

 OCR1B = 5787;

 OCR1A = 5787;

 flag.start = 0;

 }

 }

 else{

 TCCR1B = 0;

 if (flag.eco){exhaust += 1;}

Appendix 2

3 (3)

 if (exhaust > 5000){

 TCNT1 = 0;

 flag.start = 1;

 flag.eco = 0;

 exhaust = 0;

 PORTC &= ~0x3F;

 PORTB &= ~0xC0;

 PORTD &= ~0xF0;

 air += 12;

 rpos = 1; lpos = 4;

 memory(air, 1);

 }

 }

 if (air > 60000) {air = 5000;}

 if ((signal.reset == 11)&&!(flag.reset)){

 flag.reset = 1;

 air = 0;

 memory(0, 1);

 }

 if (!signal.reset){flag.reset = 0;}

}

}

Appendix 2

1 (6)

Appendix 2

2 (6)

Appendix 2

3 (6)

Appendix 2

4 (6)

Appendix 2

5 (6)

Appendix 2

6 (6)

